Product Description

CHINAMFG rollers enhance rotation on the bushing while reducing impact loads on the sprocket tooth during operation.

All components are heat treated to achieve maximum strength. All components are heat treated to achieve maximum strength.

Pre-loaded during the manufacturing process to minimize initial elongation.

Hot dipped lubrication ensures 100% lubrication of all chain components to extend wear life and reduce maintenance costs.

d L1 L2 H t/T
mm mm mm mm mm mm mm mm mm kgf kgf kg/m
*04C-2 *25-2 6.350 3.18 3.30 2.31 7.10 7.90 5.90 0.75 6.40 7.00 8.60 0.28
*06C-2 *36-2 9.525 4.77 5.08 3.58 11.10 12.30 9.00 1.27 10.13 15.80 20.00 0.69
08A-2 40-2 12.700 7.85 7.77 3.96 15.50 16.70 12.00 1.52 14.38 27.60 34.50 1.30
571A-2 50-2 15.875 9.40 10.16 5.08 19.30 20.70 15.00 2.00 18.11 43.60 59.50 2.08
012A-2 60-2 19.050 12.57 11.91 5.94 24.05 25.95 18.00 2.40 22.78 62.30 80.60 3.09
016A-2 80-2 25.400 15.75 15.88 7.92 30.75 33.15 23.50 3.20 29.29 111.20 134.80 5.29
571A-2 100-2 31.750 18.90 19.05 9.52 37.70 41.10 30.00 4.00 35.76 173.50 224.30 8.01
571A-2 120-2 38.100 25.22 22.23 11.10 47.75 51.05 35.80 4.90 45.44 249.10 326.40 11.84
571A-2 140-2 44.450 25.22 25.40 12.70 51.35 55.35 41.50 5.60 48.87 338.10 409.00 14.89
032A-2 160-2 50.800 31.55 28.58 14.27 61.35 65.05 48.00 6.40 58.55 444.80 556.80 20.26
036A-2 180-2 57.150 35.48 35.71 17.46 69.25 73.65 54.00 7.20 65.84 560.50 652.80 27.62
040A-2 200-2 63.500 37.85 39.68 19.84 75.35 79.65 59.60 8.00 71.55 693.90 921.60 33.64


Usage: Transmission Chain, Conveyor Chain, Roller Chain
Material: Alloy/Carbon Steel
Surface Treatment: Polishing
Feature: Heat Resistant
Chain Size: 1/4"~3"
Structure: Roller Chain
US$ 10/Meter
1 Meter(Min.Order)

Request Sample



Customized Request

roller chain

How do roller chains handle variable speed applications?

Roller chains are well-suited for variable speed applications due to their inherent design characteristics. Here’s a detailed answer to the question:

1. Speed Range: Roller chains can accommodate a wide range of speeds, making them suitable for variable speed applications. The speed of the driven sprocket can be adjusted, and the chain will adapt to the changing speed requirements.

2. Smooth Power Transmission: Roller chains provide smooth and consistent power transmission even at varying speeds. The engagement between the chain and the sprockets remains constant, ensuring reliable power transfer without slippage or loss of efficiency.

3. Tension Adjustment: In variable speed applications, the tension of the roller chain may need to be adjusted to maintain optimal performance. Proper tension ensures proper engagement with the sprockets and prevents excessive wear or elongation of the chain.

4. Lubrication: Adequate lubrication is crucial for roller chains in variable speed applications. Lubrication helps reduce friction, wear, and heat generation, ensuring smooth operation and extending the chain’s lifespan. Depending on the speed range and operating conditions, the appropriate lubrication method and frequency should be determined.

5. Chain Selection: Selecting the right type and size of roller chain is important for variable speed applications. Different chain designs and materials may have specific speed limitations or performance characteristics. Consulting the manufacturer’s specifications and recommendations can help ensure the chain’s compatibility with the required speed range.

6. System Design Considerations: When designing variable speed applications with roller chains, factors such as sprocket sizes, drive ratios, and load requirements should be carefully considered. Proper sizing and alignment of the sprockets, as well as selecting the appropriate chain pitch, can contribute to the smooth operation and longevity of the system.

It’s important to note that proper maintenance, including regular inspection, lubrication, and tension adjustment, is essential for roller chains in variable speed applications. Monitoring the chain’s condition and addressing any signs of wear or damage promptly will help ensure safe and reliable operation.

roller chain

How do roller chains handle abrasive environments?

Roller chains are designed to handle various operating conditions, including abrasive environments. Here’s a detailed answer to the question:

1. Material Selection: Roller chains are typically constructed using high-quality materials that offer good resistance to abrasion. Common materials used for roller chains include alloy steel, stainless steel, or specialized coatings that enhance wear resistance.

2. Surface Hardness: The components of a roller chain, such as the pins, bushings, and rollers, are heat-treated to achieve a high surface hardness. This hardness helps to resist wear caused by abrasive particles present in the environment.

3. Lubrication: Proper lubrication plays a crucial role in protecting roller chains from abrasive wear. Lubricants act as a barrier between the chain components and abrasive contaminants, reducing friction and minimizing wear. The lubricant also helps to flush away any abrasive particles that may come in contact with the chain.

4. Sealing and Protection: Roller chains can be equipped with seals or protective covers to provide an additional layer of defense against abrasive particles. These seals help to prevent contaminants from entering the chain and causing premature wear. Seals also help to retain lubrication within the chain, further enhancing its performance in abrasive environments.

5. Regular Maintenance: Regular inspection and maintenance are essential to ensure the longevity of roller chains in abrasive environments. This includes periodic cleaning to remove accumulated debris and checking for signs of wear or damage. Prompt replacement of worn components is necessary to prevent further deterioration and ensure reliable operation.

While roller chains are generally robust in abrasive environments, it’s important to consider the severity of the abrasion, as extremely abrasive conditions may require specialized chain materials or additional protective measures. Consulting with experts and selecting the appropriate chain design and materials based on the specific application requirements can help maximize the performance and lifespan of roller chains in abrasive environments.

roller chain

Are there any alternatives to roller chains for power transmission?

Yes, there are several alternatives to roller chains for power transmission, depending on the specific application requirements. Here’s a detailed answer to the question:

1. Belt Drives: Belt drives are a common alternative to roller chains for power transmission. They use a flexible belt made of materials such as rubber, polyurethane, or neoprene. Belt drives offer smooth and quiet operation, high-speed capabilities, and can transmit power over long distances. They are often used in applications where precise synchronization is not required.

2. Gear Drives: Gear drives use meshing gears to transmit power. They offer high torque capabilities, precise motion control, and can handle heavy loads. Gear drives are commonly used in applications that require high efficiency and precise speed control, such as industrial machinery, automotive transmissions, and robotics.

3. Timing Belts: Timing belts, also known as synchronous belts, are toothed belts that provide positive power transmission. They are used in applications that require precise synchronization between two or more shafts. Timing belts offer low noise, high efficiency, and resistance to slippage. They are commonly used in automotive engines, industrial automation, and precision machinery.

4. Chain Drives: Chain drives, similar to roller chains, use interconnected links to transmit power. However, chain drives often have larger pitch sizes and heavier-duty construction compared to roller chains. Chain drives offer high load-carrying capacity, durability, and can operate in demanding conditions. They are commonly used in heavy machinery, agricultural equipment, and motorcycles.

5. Direct Drives: Direct drives eliminate the need for mechanical power transmission components like chains or belts. They directly connect the motor or power source to the driven equipment, providing a more efficient and compact solution. Direct drives are commonly used in applications that require high precision, such as CNC machines, robotics, and linear motion systems.

When considering alternatives to roller chains, factors such as load requirements, speed, precision, environmental conditions, and cost must be taken into account. Each alternative has its own advantages and limitations, and the choice depends on the specific needs of the application.

China Good quality 10A-2 A Series Short Pitch Roller Chains Short Pitch Transmission Roller Chain  China Good quality 10A-2 A Series Short Pitch Roller Chains Short Pitch Transmission Roller Chain
editor by CX 2023-09-19